
Optimizing Multi-Modal Transportation in Smart
Cities: A Graph-Oriented Database Approach

Mihai Hulea
Automation Department

Technical University of Cluj-Napoca
Cluj-Napoca, Romania

mihai.hulea@aut.utcluj.ro

Radu Miron
Automation Department

Technical University of Cluj-Napoca
Cluj-Napoca, Romania

radu.miron@aut.utcluj.ro

Andrei Rusu
Innovation Office

NTT DATA Romania
Cluj-Napoca, Romania

rusu.andrei@nttdata.com

Abstract— This paper presents an innovative approach to
enhancing urban transportation efficiency through the
integration of multimodal transportation networks using graph
databases, specifically OrientDB. Addressing the inefficiencies
in traditional segregated passenger and freight movements, the
study explores the potential of graph databases to effectively
manage and optimize complex, interconnected urban
transportation systems. Utilizing a practical implementation in
Cluj-Napoca, Romania, the research demonstrates how this
model can improve operational efficiency and resource
allocation. The paper proposes a graph-oriented data model
designed to store several types of transportation nodes and
links effectively. Additionally, we explore a range of queries to
demonstrate the practical usability and functionality of this
data model.

Keywords— Multimodal Transportation, Graph Databases,
Urban Mobility

I. INTRODUCTION
In the contemporary urban landscape, the efficient

movement of both people and goods stands as one of the
pillars of sustainable city living. Multimodal transportation,
the use of various transport modes like buses, trains,
bicycles, and walking in a single journey, is recognized as a
vital component of urban mobility. The potential of
multimodal transportation extends further when considering
the integration of passenger and freight movements and it
holds an important potential in streamlining city traffic.
Currently, most urban transportation systems operate with a
distinct separation between passenger and freight services.
This segregation often leads to inefficiencies, such as
underutilized capacity and overlapping routes, contributing to
increased traffic congestion, pollution, and delays. The last
mile of delivery is often the most expensive and least
efficient part of the transportation journey. It can account for
a significant portion of the total transportation costs due to
factors like traffic congestion, parking limitations, and
frequent stops. Cities often face challenges with congestion,
especially in densely populated urban areas. The increase in
delivery vehicles contributes to this congestion and leads to
higher emissions. Integrating freight delivery with existing
public transportation can lead to innovative solutions for last
mile delivery challenges [9]. For instance, using public
transit for parcel delivery during off-peak hours can optimize
resource use. Another approach is proposed in [10] where a
two-tiered solution is used for moving parcels into urban
areas. Public transport routes are utilized for moving
packages into urban areas, followed by delivery through
smaller last-mile vehicles. A key feature is the use of
automated parcel lockers at designated transit stops, allowing
for asynchronous transfer of goods between transit and last-
mile vehicles.

In the context of the described urban transportation
landscape, the primary objective of this paper is to explore
the application of graph databases in modeling a multi-modal
transportation network considering several types of nodes
related to both passenger and freight transportation. The
proposal aims to explore the capabilities of graph databases
to address the complexities and dynamic nature of modern
urban transportation systems. Graph databases are ideal for
modeling complex networks like transportation systems due
to their inherent structure of nodes and edges, which
naturally represent stations, junctions, routes, and
connections. This research is partially sustained by the
DELPHI project funded by the European Union under grant
agreement No 101104263. The project aims to improve
urban mobility in European cities by making it more efficient
and sustainable by providing integrated freight and passenger
transportation. Our study on using graph databases to
optimize multimodal transportation directly supports
DELPHI's goals.

II. STATE OF THE ART

Recently, numerous frameworks have emerged to handle
graph-like data, reflecting the current importance of such
data in various domains like social and biological networks.
Graphs have long been employed to represent diverse
domains, such as genetic interactions in science or user
relationships in social networks. Recent work categorizes
graph data management systems into two classes: graph
databases and distributed graph processing structures [1].

Graph databases store data by organizing it into nodes,
edges, and relationships, eliminating the need for indexes
(index-free adjacency). Data is conceptually organized in
nodes, each linked to another through edges, forming
relationships. This structure allows direct lookups between
connected nodes, eliminating the need for indexing. Modern
social networking sites like Facebook utilize graph databases
to efficiently store large amounts of data [2].

Graph databases represent one of the four categories of
NoSQL databases, alongside key-value, document, and
column-oriented databases. NoSQL database management
systems emerged in response to the limitations of traditional
technologies and the challenges of the Web 2.0 era, and their
introduction can be traced back to Google's MapReduce
(2004) and BigTable (2006) [3].

Since the 1980s, the relational model has dominated the
computer industry for data storage and retrieval. However, its
decline is evident due to a rigid schema, hindering the
addition of new relationships. Another drawback is the
inefficiency in handling the growing volume of data, as
joining numerous tables becomes cumbersome [4]. The

relational model was introduced by E.F. Codd in 1970, to
overcome the problems of the network and hierarchical
models database systems [5]. Although accepted by the
academic community, the adoption of the relational
databases started with the introduction of IBM’s System R
[6].

Relational databases have a fixed structure, known as a
schema, established at database creation. All inserted data
must adhere to this schema, emphasizing the importance of
proper database design from the start. Anticipating future
data requirements is crucial for accommodating additional
needs over time. Primary and foreign keys are used to
maintain referential integrity, ensuring foreign key values
match primary key values in parent tables. However,
interpreting foreign key values without a query connecting
tables poses challenges, as these values are often
automatically generated numbers [2].

A graph database employs vertices (nodes) and edges
(relationships) to store data. The properties are the attributes
of the nodes. In contrast to the relational model, where for
example each person and their associations may be stored in
separate tables, a graph database represents individuals as
nodes and their connections as edges. Graph databases excel
in graph operations such as traversals and shortest path
calculations. Given the abundance of accessible data,
individuals may find value in exploring graph representations
or adopting graph databases for their scalability and querying
capabilities. Graph databases are particularly effective in
visualizing data with numerous many-to-many relationships
[7].

Reference [1] presents a comparison between the most
popular implementations of graph databases. The list of the
considered databases includes: Neo4j, DEX, Infinite Graph,
Infogrid, HyperGraphDB, Trinity, and Titan.

Graph-oriented databases are increasingly recognized as a
natural fit for addressing challenges such as storing and
managing information related to transportation networks. In
the literature, there are initiatives that highlight the use of
these databases to represent traffic networks effectively.
Additionally, various algorithms have been employed to
optimize traffic routing. These initiatives demonstrate the
potential of graph-oriented databases in enhancing the
efficiency and effectiveness of transportation network
management. In [11] and [12] a solution for representing
multimodal transportation network using Neo4J is proposed.
In addition, [12] proposes a solution for configuring and
saving graph routes using a mobile application and GPS data.
[13] presents a framework for a multimodal graph database
that encompasses both public and private transit modes, such
as driving, walking, cycling, bus, and rail. Based on detailed
investigation and tests performed in a London use case it is
concluded that a graph database is more suitable for
representing and managing multimodal transportation
networks compared with traditional relation database.

III. PROPOSED SOLUTION

The proposed solution was implemented based on
OrientDB which is an open source, multi-model database that
supports graph, document, key-value, and object-oriented
database models. In choosing OrientDB key advantages
include its hybrid model, allowing for a blend of graph,
document, object, and key/value models in a single
application. Its flexible schema supports both strict and
evolving data models. OrientDB's SQL-like query language,
grounded in familiar SQL syntax, enhances ease of use.

Additionally, its open-source nature under the Apache 2
license presents a cost-effective solution.

A graph is a representation of a network-like structure,
comprising Vertices (also referred to as Nodes) connected by
Edges (also known as Arcs). OrientDB's graph model
adheres to the property graph concept, outlining the
following key components:

 Vertex: An entity capable of linking with other
Vertices, featuring the following essential properties:
unique identifier, the set of incoming Edges, the set of
outgoing Edges.

 Edge: An entity linking two Vertices, possessing the
following essential properties: unique identifier, link
to an incoming Vertex, link to an outgoing Vertex,
label defining the type of connection/relationship
between the head and tail vertices.

 Apart from these mandatory properties, both vertices
and edges can accommodate a set of custom
properties defined by users. This flexibility allows
vertices and edges to resemble documents, providing
additional customization.

Table I presents a comparison between the relational
model and the OrientDB graph model.

TABLE I. RELATIONAL AND ORIENTDB GRAPH MODELS

Relational Model OrientDB Graph Model

Table Class that extends “V” (for Vertex) and “E”
(for Edge)

Row Vertex

Column Property of a Vertex or an Edge

Relationship Edge

In conjunction with the graph model, OrientDB supports
the object model, thus enabling inheritance and
polymorphism. These are powerful features for designing the
data model and for querying the database [8].

A. Graph Oriented Data Model for Multi-Modal
Transportation
Figure 1 presents the object-oriented data model for the

proposed graph. The classes presented in the data model are
split between vertices (or nodes) and edges. To define vertex
and edge classes in OrientDB the V and E predefined classes
must be extended, respectively.

As mentioned earlier the data model is split between
nodes and edges. The model defines a base node class,
multimodal_node, that contains the common attributes of all
the other node types in the graph: id, name, description, and
the geographical coordinates (latitude and longitude).
Multimodal_node is further extended by concrete nodes:
bus_station, bike_station, closed_parking, cargo_warehouse
and parcel_locker. The classes bike_station, parcel_locker
and closed_parking, apart from the inherited attributes, have
two other attributes: capacity and availability.

Fig 1. Object oriented data model

Regarding the edges, the model contains a base, namely
connection. The concrete edge types are: bus_connection,
walk_connection, cargo_connection and bike_connection.
These classes inherit the following attributes from the parent
connection: in, out and weight. The in and out attributes have
the purpose of storing the references to the input and output
nodes that the edge connect, respectively. The weight
attribute represents the effort needed to get from the input
node to the output node connected by the current edge. While
the weights of the bus and cargo connections are constant
(=1), the weights of the bike and walk connections are
proportional with the distance between the two nodes.

B. Graph Network
As a proof of concept, the current paper proposes the

graph of a partial public transport network from Cluj-
Napoca, Romania. For populating the graph, real data from
several public sources was used:

 bus stops:
https://api.tranzy.dev/v1/opendata/stops

 bike stations:
https://portal.clujbike.eu/stations.txt

 closed parking: https://data.e-
primariaclujnapoca.ro/sitpark.json

 parcel locker & other data:
Google Maps and Open Street Map

Figure 2 presents a partial image of the graph
implementation. The full graph is available online at:

https://github.com/dcs-research/paper-multimodal-graph-
db-aqtr-2024/blob/main/graph.png

Fig 2. Partial public transport graph

C. Queries for Finding Optimal Routes
The model of the public transport network represented as

a graph can be particularly useful for finding the shortest
path between two nodes. For example, one use case would be
the use of the public transportation system for package
delivery from the warehouse to a specific parcel locker.
Figure 3 presents the OrientDB query, and the result
represented as a sub-graph.

Fig 3. Shortest path between the warehouse and parcel locker

D. Queries for Finding Path to Closest Node Type
Another common use case is to find the path to the

closest node type. For example, finding the path from a bus
stop to the closest closed parking (see Figure 4).

Fig 4. Shortest path to the closest closed parking

E. Queries for Finding Optimal Route with Constraints
OrientDB facilitates the execution of queries enabling the
identification of the shortest path between two nodes while
passing through an intermediate node. To illustrate this
capability, consider a last-mile package delivery solution that
leverages both public buses and the city’s free bike-sharing
service. In this scenario, the delivery agent can be efficiently
routed from a starting bus stop (Snagov Nord) to the parcel
locker containing the package (Easybox Brancusi 85). This
route is optimized by passing through the nearest bike station
in proximity to the designated parcel locker (see Fig. 5).

Fig 5. Last mile delivery solution

IV. CONCLUSIONS

The present paper highlights the role of multimodal
transportation in enhancing urban mobility. By integrating
passenger and freight movements through a multi-modal
network modeled in a graph database, cities can significantly
improve the efficiency of their transportation systems. This
integration promises to reduce traffic congestion, lower
pollution, and streamline the last-mile delivery process. The
use of graph databases, as demonstrated in the OrientDB
model, allows for a more dynamic and flexible representation
of transportation networks, accommodating the complex and
ever-changing nature of urban transport systems. The

adoption of graph databases offers a robust solution for
managing the complexities inherent in multimodal
transportation networks. This approach has advantage of
relational database models by providing more intuitive and
efficient methods for data representation and querying,
especially in systems characterized by many-to-many
relationships and network-like structures. The practical
application of the proposed graph database model in the
public transport network of Cluj-Napoca highlights the
potential of this approach in real-world scenarios.

ACKNOWLEDGMENT
Part of this research has been conducted as part of the

DELPHI project, which is funded by the European Union,
under grant agreement No 101104263. Views and opinions
expressed are however those of the author(s) only and do not
necessarily reflect those of the European Union or the
European Climate, Infrastructure and Environment Executive
Agency (CINEA). Neither the European Union nor the
granting authority can be held responsible for them. In
addition, this research was collaboratively conducted by -
Technical University of Cluj-Napoca, Romania.

REFERENCES

[1] D. S. Rawat and N. K. Kashyap, “Graph Database: A Complete
GDBMS Survey,” International Journal for Innovative Research in
Science & Technology, vol. 3, no. 12, May 2017.

[2] S. Paul, A. Mitra, and C. Koner, “A Review on Graph Database and
its representation,” in 2019 International Conference on Recent
Advances in Energy-efficient Computing and Communication
(ICRAECC), Mar. 2019, pp. 1–5.

[3] M. Indrawan-Santiago, “Database Research: Are We at a Crossroad?
Reflection on NoSQL,” in 2012 15th International Conference on
Network-Based Information Systems, Melbourne, Australia: IEEE,
Sep. 2012, pp. 45–51.

[4] S. Batra and C. Tyagi, “Comparative Analysis of Relational and
Graph Databases,” International Journal of Soft Computing and
Engineering (IJSCE), vol. 2, no. 2, 2012.

[5] E. F. Codd, “A relational model of data for large shared data banks,”
Commun. ACM, vol. 13, no. 6, pp. 377–387, Jun. 1970.

[6] M. M. Astrahan et al., “System R: relational approach to database
management,” ACM Trans. Database Syst., vol. 1, no. 2, pp. 97–137,
Jun. 1976.

[7] N. Tyagi and N. Singh, “Graph Database-An Overview of its
Applications and its Types,” International Journal of Computer
science engineering Techniques., vol. 2, no. 3, 2017.

[8] “Data Modeling · OrientDB Manual.” Accessed: Jan. 25, 2024.
[Online]. Available:
https://orientdb.org/docs/3.0.x/datamodeling/Tutorial-Document-and-
graph-model.html

[9] D. Delle Donne, L. Alfandari, C. Archetti, and I. Ljubić, “Freight-on-
Transit for urban last-mile deliveries: A strategic planning approach,”
Transportation Research Part B: Methodological, vol. 169, pp. 53–81,
Mar. 2023, doi: 10.1016/j.trb.2023.01.004.

[10] I. Azcuy, N. Agatz, and R. Giesen, “Designing integrated urban
delivery systems using public transport,” Transportation Research Part
E: Logistics and Transportation Review, vol. 156, p. 102525, Dec.
2021, doi: 10.1016/j.tre.2021.102525.

[11] P. Wirawan, D. Riyanto, D. Nugraheni, and Y. Yasmin, “Graph
Database Schema for Multimodal Transportation in Semarang,”
Journal of Information Systems Engineering and Business
Intelligence, vol. 5, p. 163, Oct. 2019, doi: 10.20473/jisebi.5.2.163-
170.

[12] B. Vela, J. M. Cavero, P. Cáceres, A. Sierra, and C. E. Cuesta, “Using
a NoSQL graph oriented database to store accessible transport routes,”
in Proceedings of the Workshops of the EDBT/ICDT 2018 Joint
Conference, 2018, pp. 62–66.

[13] S. Park and T. Cheng, “Framework for constructing multimodal
transport networks and routing using a graph database: A case study
in London,” Transactions in GIS, vol. 27, no. 5, pp. 1391–1417, 2023,
doi: 10.1111/tgis.13071.

